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Dibosons at the Tevatron w Nov 14" 2008

s - channel

X Studies of electroweak (EW) vector boson
production are an important aspect of the
Tevatron physics program.

Z y, W

The EW group structure is central to the

Standard Model: SU(2), ® U(1), W/Z

X Potential for new physics is manifest in:

Precision measurements of mass and EW

t - channel

parameters

Relationships between the masses of the q > AN W/ Z
W and Z

Increased cross sections or changes in Y
kinematics
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Tevatron Measurements w Nov 14*, 2008

X Diboson measurements at the Tevatron are progressing quickly and
new final states are frequently appearing

= Currently all diboson measurements are in fully leptonic final states

X Right: total cross sections of . Tevatron Run I pp at \s = 1.96 TeV
Tevatron EW results 10 - . '  —— D@Runll
o WW ): T —=~ CDFRunll
s F 7 ~Theory
D@: 13.8";0(stat + syst) pb %103%
CDF: 13.6+3.1(stat + syst) pb % 102:_ " .om
o 10°E
Theory: 12.4+0.8 pb @k
2 10E s
o( WZ ): 5 = : +*
_ sl
D@: 2.7' 1 (stat + syst) pb LE ! H
CDF: 4.3']7(stat + syst)pb 0"~ W A wWw Wz 7z ioeww

M, =160 GeV

Theory: 3.7+0.3 pb
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ZZ Observation by DO w N:,:,w, 4 zf,eosge

X Just two months ago, D@ announced observation of ZZ production
in ZZ-llvv and ZZ-1lll (4 charged leptons) final states

X Cross section measured to be . Tevatron Run II pp at Ns = 1.96 TeV
10°E : ' i ; ; : ;
o(ZZ) = 1.60 + 0.63 (stat) = 0.16 (syst) pb E o —*~ D@ Runll
o(SM)=1.4+£0.1pb S | | == Theory |
a T
[J.M. Campbell and R.K. Ellis PRD 60, 113006 (1999)] g 10’ 3 :
S10°F R
X Significance of the measurement was g 10 B
calculated to be 5.7 standard © 1 5
deviations above background - H

77 Ho WW
M, =160 GeV

-1
107 —w 7 Wy 7y WW_ WZ
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Connecting with Higgs Search w Nov 14™ 2008

8,, B Tevatro =—:1-CLs:Observed
X H-WW is the dominant decay mode for ~ I} . 1-CLs Expected ™
. . - Combined Expected +1-o
high mass Higgs bosons ( M _>135 GeV) 1 — Bxpectod 22-6.-
Drives current exclusion limits oG

T 90%CLL.
Direct WW production is dominant background

Essential to understand this background
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Connecting with Higgs Search w Nov 14™ 2008

evaftr o =—=:1-CLs:Observed

1-CLs

L1F

¥ H->WW is the dominant decay mode for A TOVALON. 1:CLs Expected
C (’omt?lne(;l © Expected t1-o
high mass Higgs bosons ( MH>135 GeV ) iF — - Expocied £2
e 95% C.L.
0.9 7

90%:C.L.

Drives current exclusion limits

08¢

Direct WW production is dominant background

0.7 -

Essential to understand this background AR W
155 160 165 170 175 180 185 190 195 %00
my (GeV/cY)

x  WH-lvbb is a promising search channel for a low mass Higgs (M <135 GeV)

Similar final state to WW/WZ-lvjj

Similar challenges
Small signal in a large background

S/B= WH: 1.2% WW/WZ: 2.9%

Can test similar analysis techniques

Multivariate classifiers, statistical treatment

WW /WZ-lvjj represents a valuable proving ground for analysis
techniques used in the Tevatron Higgs search

Wade Fisher Evidence for WW/WZ-lvijj
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The DO Detector w Wine & Cheese

Nov 14", 2008

Calorimeter Tracker

Muon Scintillators

X Silicon microstrip vertex detector

X Scintillating fiber tracker Angular Coverage I n I

X Uranium / liquid argon calorimeter Muon ID ~2

X Wire chamber + scintillation counter muon Tracking ~2.5
detector system EM / Jet ID ~4

X 2T solenoid magnet & 1.8T toroid magnet

Wade Fisher Evidence for WW/WZ-lvijj
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Dataset w Nov 14, 2008

Luminosity (/fb)

Run Il Integrated Luminosity | 19 April 2002 - 9 November 2008 |
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Dataset w Nov 14, 2008

Luminosity (/fb)

Run Il Integrated Luminosity | 19 April 2002 - 9 November 2008 |
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Simulated Samples

X Nearly all event sources are generated via Monte
Carlo with a full simulation of detector response

W/Z to tau decays and tau cascade decays are included

Event Source Generator o(SM) / o(WW) = 12.4 pb

X The rate and distributions of multijet events, in which
jets are misidentified as leptons, are determined from
data

The multijet contributions are corrected for misidentified
events in simulated samples.

Wade Fisher Evidence for WW/WZ-lvjj
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WW vs WZ Nov 14™, 2008

X We treat events from WW and WZ as indistinguishable signals

Largely due to insufficient dijet mass resolution: ~10 GeV difference in mass

Cascade decays of heavy quarks in Z—bb contain neutrinos, thus reducing
reconstructed dijet mass in these events. Final mass difference: ~7 GeV

X Consider the relative selection efficiency for WW vs WZ
WW( WZ )—lvjj branching fraction: ~28.5 ( 14.2 )%
WW(WZ )—=lvjj oxBR: ~3.5 (0.5) pb
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Lepton Selection

X Selecting electrons and muons
P,.> 20 GeV InEMI<1.1 Ir)MUI<2.O
Spatial match to a central track
Veto events with multiple leptons

Electrons:

Require calorimeter showers consistent
with electromagnetic interactions

Calorimeter energy is clustered in radial
cones of AR = ((A¢)? + (An?))™ < 0.4

Require that 90% of energy is deposited
in the EM calorimeter

Muons:

Must have hits in at least three muon
detector layers

Signature must be isolated in both the
tracker and the calorimeter

Events/5 GeV

Wine & Cheese
Nov 14", 2008

Y ; %”
R X

Jet
Muon
\Detectors
"
d Tracker
\
Electromagnetic Hadronic
Calorimeter Calorimeter
00 3 D@, 1.1 fb' -+ Data
4000 B Diboson Signal
3500F O Wets
3000 i_ [ 1Z+ets
2500 B Top
2000F [IMultijet
1500
1000
500
o

0 20 40 60 80 100 120 140

Lepton P, (GeV)

Wade Fisher Evidence for WW/WZ-lvijj 14



. " Wine & Cheese
W-lv Selection Nov 14", 2008
dv=>E
X Once we have a good lepton, we want - T

events consistent with W—-lv decay Y : ?\u

Undetected neutrino manifests as an

imbalance in transverse momentum: Jet
“missing” transverse energy (MET) Muon
To reduce multijet backgrounds, we . \Detectors
require MTW > 35 GeV. € Tracker
~_ .
MY =\2 p (I*) p,(v) (1=cos( (I")— () Electromagnetic Hadronic
. Calorimeter
Calorimeter
> % Do, 1.1 ! + Data > [ D@, 11! + Data
E 3500 Bl Diboson Signal E 3500 B Diboson Signal
-%“ 3000; 5W+jets :g 30[)0;— EWﬂ'etS
4 - Z+jets Y . Z+jets
A = 2 2500F
M 25tmg Bl Top K - B Top
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U N | SRR R
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Wade Fisher Evidence for WW/WZ-lvijj 15



. Wine & Cheese
W / Z—-qq Selection Nov 14, 2008
— {v=E
X Quark jets arising from W/Z—qq decays - T

are high-energy and relatively central Y - %IJ

Cluster energy in cones of AR < 0.5

Calorimeter signature must be inconsistent Jet
with electron signatures Muon
) Detectors
In__1<2.5 No veto on # jets +
JET e
Tracker
Highest jet p_ > 30 GeV —__
Hadronic
n . . Electromagnetic
2"! leading jet P, > 20 GeV i g Calorimeter
Calorimeter
F 10000
% so0of. D@, 1.1 ' + Data S [ D@, L1 + Data
0 - . . @) - ) _
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= 4000 _ < L .
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- [_IMultijet i [ Multijet
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10001~ 2000:—
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Monte Carlo Corrections Nov 14", 2008

X The event selection process includes efficiency and kinematic corrections for
known data/Monte Carlo differences

Z pT: The transverse momentum of Z bosons in Z+jets events is corrected
to measurements in data.

Multiple Parton Interactions: The simulation of multiple parton
interactions in beam collisions is tuned to data.

Lepton and Jet Identification: Percent-level corrections. Often arise from
changes in real detector efficiency during running period.

Trigger selection: Trigger efficiencies are measured in data and propagated
to simulated samples.

Luminosity profile: The instantaneous luminosity profile of the simulation
is matched to data. Helps to properly model minimum bias effects.

Beam z-position profile: The longitudinal profile of the beam interaction
region is matched to data. Impacts angular and energy calculations.

Wade Fisher Evidence for WW/WZ-lvijj
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Event Yields Nov 14™, 2008
X Following selection and standard corrections, we may evaluate the expected and
observed number of events in each selection

¥ The dominant background ( ~85% ) is W+jets. Signal / Background ~ 3%.

Two consequences:

We cannot rely upon the predicted W+jets cross section. Must determine in data.

We must study all systematic effects on the background of the order ~1-2%.

Expected and Observed Numbers of Events

erjj channel purjg channel
Luminosity 1067 pb™* 1074 pb~*
WV 357.5 £ 2.3 415.8 £ 2.7
W +light flavor jets 8158 &+ 72 9681 + &84
W +heavy flavor jets 2060 + 26 2319 + 28
Z+jets 406 £+ 13 1237 4+ 20
tt + single top 463.3 £+ 2.2 438.0 £+ 2.2
Multijet 825 + 11 327.0 £ 9.6
A 2.99 + 0.14 11.53 £+ 0.28
Total predicted 12272 £ 78 14428 + 91
Data 12473 14392
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Systematic Uncertainties Nov 14", 2008

X With an expected signal/background of ~3%, we need to study sources of
systematic uncertainty on the level of 1-2%.

X We consider sources of systematic uncertainty at every level of our selection:
Luminosity, Trigger efficiency, lepton selection efficiency
Jet identification, energy scale, and energy resolution

Background cross sections, background modelling effects

X We consider sources of systematic uncertainty that impact both kinematic
variable shape and those that have a flat response (eg, Luminosity)

Systematic effects are rarely symmetric = require careful measurement of each source

Example: Jet energy scale uncertainty for signal events

0.25 01—

— Nominal JES
— +1 Std Dev JES
— -1 Std Dev JES

Ilalll

0.2
+1 Std. Deviation
0.15

Probability / 10 GeV

(=]
L L I

0.1 -1 Std. Deviation

-0.05}
0.05 i

]
S
ot

PRI BT R PRI RS S SR S SIS ST T
50 100 150 200 250 300

Fractional Uncertainty

Lol 1 | 11 | | 11 1 | 11 1 | 11 | ‘ 11 | | 11 1 L1
00 20 40 60 80 100 120 140 160 180 200
Dijet Mass (GeV) Dijet Mass (GeV)
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Signal Modeling Nov 14, 2008

X We simulate diboson signal events at

N -
leading order (LO) using Pythia g o.14E — Pythia
Comparisons with NLO using MC@NLO 2012 +MC@NLO
. 1 . . = -
indicate differences in several R
p -
acceptance-related variables . 0.08F
To compensate, we correct the Pythia 0.06|~
diboson system at generator level to 0.041
match MC@NLO 0.02~
Correlations amongst 1-D variables are 1 2 3 4 5 6 71 8.9
handled via a 3-D correction model AR Between Bosons
> 0.18F _ > F .
- — Pythia L 0.08 — Pythia
O 0.16H Y O TE Y
<o + MC@NLO S 0.07F + MC@NLO
E 0.12 HS *;‘ 0'06;_
z ok Z 0.05
R R
1 = 0.04
A< 0.08f* oo E
0.06— 0.03-
0.04F 0.02F
0.02 0.017
c T T PR e = I TR BT
% 10 20 30 40 50 60 70 80 90 100 % 50 100 150 200 250

P, of Diboson System P, of Single Boson
MC@NLO: http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO/
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Angular Distributions

X Following event selection, we observe
differences between data and MC in the
angular distributions of jets

Differences of this magnitude must come
from the dominant V+jets background

Recall, jet pT distributions well-modeled

X Detailed studies conclude that these effects
arise due to the relative angles of low p_jets

Alpgen generator tuning, Pythia tune,
Pythia/Alpgen interface
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Angular Distributions II

' Wine & Cheese

Nov 14", 2008

S 2000F —*= Data 1
. . Z 1300F. MM Diboson Signal D@, 1.1 fb
X Studies of these effects in a range of 5 ek Elg’fjets
C +jets
generators reveal similar modeling " a00f -ch)
effects in jet angular distributions 1323: — Mulige
Size and distributions of the effects nearly 800;—
identical to that found in the data Zggi
arXiv/hep-ph:0706.2569 g ===
3 2 -1 0 1 2 3
04 | | | | | | |
0.3

Ariadne -------
Helac
MadEvent

(1/0)do/dn;
o
N
(1/0)doldno
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Angular Distributions III Nov 14, 2008

X We correct at the event-level using correction functions derived from the
relative data/MC shapes

Subtract non-W/Z+jets backgrounds from data and compare to W/Z+jets MC

Before Corrections
° ° ° d °
AR(jetl, jet2) Leading Jet n 2"" Leading Jet n
& 4000F <+ Data R F —— Data S 2000 —+ Data
Z £ D@, L.1fb" I Diboson Signal| 3 2200 mmm Diboson Signal Dd, 1.1k Z 1g00F MM Diboson Signal D@, 1.1 fb
= 3500p D Wets & 2000 [ W-els = I W+ets
5 3000F [JZ+ets A 1800E ] Z+jets i L600E ] Ziets
- B Top 1600 [ Top 14001 [ Top
2500¢ [ Multijet 1400 (] Multijet 1200 C_] Multijet
2000F 1200 Lo00E-
F 1000 3
15001 800L 200 -
1000F 600 00F
3 400F 400E
E 01. Lo e L T oLt (O Frrle roatrl R PR Rl B, -l
4 5 6 3 2 -l 0 1 2 3 3 2 -l 0 1 2 3
AR(Jetl Jet2) Leading Jet n Second Leading Jet n
After Corrections
o = <+ Data o 22006 ——Data <! 1800
4000F g
S f DO, L1fb! B Diboson Signal| G 20007 WM Diboson Signal DY, L1 | §
§ 33001 B Wjets 5 18005 EE WH+jets + g
& 3000F I Z+jets 5 1600 = [ Z+jets 5 1400
2500F- -TMopi ij 1400 Ef?pl ij 1299
é [ Multijet 1200F [ Multijet 1000
2000 1000F 800
1500F- 800 600
F 600
1000F B
E 400F 400
500 3 200E 200
4 5 6 T3 2 0 1 2 3 R M T 3
AR(Jetl Jet2) Leading Jet Second Leading Jet n
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Alpgen Modeling Nov 14, 2008

¥  We've now observed that the event modeling via Alpgen needs scrutiny

To ensure proper systematic uncertainty coverage, we next moved to look at
uncertainties related to Alpgen modeling parameters

Renormalization scale: Dynamic renormalization scale of

Q’ = sz + 3 (jet pT)2 can be varied by a constant factor.

KT Scale Factor: Alpgen's scale factor for o at each decay vertex.

Parton-matching cluster pT threshold: The minimum pT for jet clusters
that are used for the MLM jet-parton matching procedure.
Alpgen authors recommend using the generator-level jet pT cut +
20% (or 5 GeV if larger)

Parton-matching clustering radius size: The size of the jet cone used
when creating jet clusters for the MLM jet-parton matching procedure.
Alpgen authors recommend using the generator-level cut.

Wade Fisher Evidence for WW/WZ-lvijj
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Parton-Jet Matching Nov 14™, 2008

X While simulating W/Z + N-jets, we need to get the following correct

1) The inclusive cross section

2) The relative cross sections for exclusive N-jet final states

We simulate by pairing Alpgen (LO matrix elements) and Pythia (parton showers)

Matrix Elements Parton Showers
1) Fixed order, parton level 1) Resummation of large logs
2) Accurate description of the 2) No limit on the number of
hard process partons
3) Limited number of partons 3) Needed for a realistic

description of the final state

4) Needed for N-jet description
in the detector

X These are complementary processes and we need to combine them.

The problem: Double-counting of final states due to jets from showering

MLM parton-jet matching algorithm ( Alpgen ): Cluster the showered partons
into cone jets. Keep events only if each jet is matched to just one parton.

Wade Fisher Evidence for WW/WZ-lvijj 25
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Alpgen Modeling II Nov 14, 2008

X Need to test two things: data/MC

agreement and systematic uncertainty % ' A (Nominal-Shified)
8
Prescription: Map AX? as a function of the i = Ay’(min)=1
change in each parameter we test - — AyX(min)=4
4
X Ultimately we care about the dijet mass, oL 2-0
so we don't want to bias that distribution. or \ / -0
= Test p, of W-lv and leading jet p_, first 2 N/
remOVing 55<M <1 10 Gev -4__I | 1 1 | | 1 1 1 | 1 1 1 | 1 | 1 | 1 1 1 | 1 1 1 | 1 1 1
3J 04 02 0 02 04 06 08 1
= Ignore any change in total normalization, as Scaling Factor of Shape Shift
this will be handled separately
oo TEST ~ § TEST § Confirmation Only
= = DA, 1.1 f5 Data > :_DQ, 1.1 fit -+ Data [ - D, 1.1 B +D
g 4000 =Diboson Signal E 5000: [ Diboson Signal g 3000 -Diatz?)son Signal
= g Wjets 3 g [ Wets Z : [ Wets
% [ 1Z+jets § 40005 [ ]Z+jets g 25005_ []Z+jets
2 W Top M 3000F- W Top E 2000 B Top
[ |Multijet . [JMultijet 150 - [ | Multijet
2000 -
C 1000
1000F 5005
50 100 éggonsmzlgtt)e dWZES(Ge\?)OO 0 20 40 60 80 100 ﬂd};‘g JéE%T%)e ‘%;)0 0 50 100 150 ZDOinet M::;J(Ge 3)00
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Alpgen Modeling III Nov 14, 2008

X AX? tests show no clear preference for altered parameters, aside from
MLM jet-parton matching pT threshold ( ignoring dijet mass for now)

] T

<:] 25__ _____ ____________________ ...................................... <j

Leadmg Jet pT+ W bosoné pT
' (55<;:MJJ<1 10 Removedj

] -
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10 : :
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|IIII|IIII1IIIIIIII|IIIIFIIII
|IIII1IIII|IIII|IIII
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=
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Alpgen Modeling IV Nov 14", 2008

X Next, confirm these results with the full 2 Variable Test

dijet invariant mass spectrum S A
o Leading Jet pT + W boson pT
- (55<M, <110 Removed)

Behavior is consistent in all three variables

Change in dijet mass at the minimum value
is ~4% effect from low to high masses

Behavior for matching pT threshold is
confirmed by Alpgen authors. Their
prescription: “Generator level pT cut +

:iiitttl
20% (or 5 GeV)” = 13 GeV for D@. 8 9 10 11 12 13 14 15 16 7
Alpgen Matching pT Threshold (GeV)

Propagate correction via event-weights

1 Variable Tests Comparing 8 GeV with 13 GeV
= - ; 8= C m
o lof 5 012 L
2: Ew 0_1: 8 |_ — Nominal
- ) - — Shi
4 = 008 Shifted
2 g :
0 0.06] T~ ]
2 - I-L'
0.04
-6 0.02
-3¢ | ' - |_|: —I_I_I_“_'—'—|=_
" 1 | L1 L 1 - | L L ] L — | E— L [ [ R | [ | [ [ _|_H=
8 10 12 14 16 18 20 00 50 100 150 200 250 300
Alpgen Matching pT Threshold (GeV) Dijet Invariant Mass (GeV)
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Systematic Uncertainties Nov 14", 2008
Source of systematic . . : : ..
. Diboson signal W +jets Z+jets Top Multijet Nature
uncertainty
Trigger efficiency, erqq channel +2/ -3 +2/ -3 +2/ -3 +2/ -3 N
Trigger efficiency, purqq channel +0/ -5 +0/ -5 +0/ -5 +0/ -5 D
Lepton identification +4 +4 +4 +4 N
Jet identification +1 +1 +1 + <1 D
Jet energy scale +4 +9 +9 +4 D
Jet energy resolution +3 +4 +4 +4 N
Cross section +20° +6 +10 N
Multijet normalization, erqqg channel +20 N
Multijet normalization, purqg channel +30 N
Multijet shape, erqq channel +6 D
Multijet shape, prqq channel +10 D
Diboson signal NLO/LO shape +10 D
Parton distribution function +1 +1 +1 +1 D
ALPGEN 1 and AR corrections +1 +1 D
Renormalization and factorization scale +3 +3 D
ALPGEN parton-jet matching parameters +4 +4 D

X Systematic uncertainty for all sources in units of the 1o fractional change (%)
X The nature of each source ( Normalization or Differential ) is also specified

X In total, 28 independent sources of systematic uncertainty

Wade Fisher Evidence for WW/WZ-lvijj
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Nov 14", 2008

X We want to evaluate our data for the presence of a signal-like excess

—Construct a X function from the ratio of Poisson likelihoods and include prior

information on the systematic uncertainties
Gaussian constraint

on systematics

N
2 _ o Bi+Si
X’(0,8,B,D) = 22 (B+S—D)—D In —
i=0

= can “float” systematics by removing 0 prior constraint (ie, free parameter in fit)

= For our model, both the signal and W+jets cross sections are free parameters

X Fit Monte Carlo templates to data gives us:
1) Best-fit signal cross section

2) Statistical and systematic uncertainty

X Significance is obtained by fitting MC templates to pseudo-data
Pseudo-data are drawn from background-only hypothesis ( zero signal )
Systematic uncertainties are randomly sampled from their prior PDFs

Frequency of cross section outcomes at least as large as observed (or expected)
cross section can be interpreted as a 1-sided Gaussian significance

Wade Fisher Evidence for WW/WZ-lvijj



Nov 14", 2008

Statistical Tests w Wine & Cheese

X In the case of the Higgs search, we seek to set limits on potential signal rates
= Similar test, comparing signal+background and background-only hypotheses

= Signal rate is now a fixed model parameter to be tested

L ( D | Q4 B) Two independent likelihood maximizations
= : <— are performed over nuisance parameters:
L (D |B ) one for each hypothesis ( S+B & B-Only )

LLR = —21InQ = X’(D|S+B) — X*(D|B)

X The relative frequency of outcomes from

S+B and B-Only pseudo-experiments 2.0t 1=-CL S+BLLR
Q - === B-On
allows us to test the signal rate 2 0.03F SonvLER
o) - — Observed LLR
CLsb: fraction of S+B pseudo-experiments ~ §0925;
more background-like than data * 0.021 CL .
: S
CLb: fraction of B-Only pseudo-experiments % 7~
more background-like than data 0.01F
1-CLb: fraction of B-Only pseudo- 0008
T —

experiments more signal-like than data

Wade Fisher Evidence for WW/WZ-lvijj
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Results using Dyet Mass Nov 14, 2008

X First, test our dijet mass templates as we would test for a Higgs signal

Are our tests consistent with a signal-like excess? Does everything work as expected?

10°
— B-Only LLR

PEs / Bin

Pseudo-Experiments drawn

10°E
= from the B-Only Hypothesis
: —
10 =
B % DY, 1.1 i + Data
= < 3000 Bl Diboson Signal
= = L Wejets
40 602 200 ) Z+ets
LLR 3 2000 B Top

| Multijet

50 100 150 200 250 300
Dijet Mass (GeV)

o
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Results using Dyet Mass Nov 14, 2008

X First, test our dijet mass templates as we would test for a Higgs signal

Are our tests consistent with a signal-like excess? Does everything work as expected?

1-CL, = 2.5X 10*, yielding a 1-sided Gaussian significance of 3.5 sigmas

o —
o - — B-Only LLR :
2 £1-CL Only 5 Dol + Data
4 - b 3000 i i
o — Observed LLR | 2 °%F Ml Diboson Signal
102 = -~ 2500 C - W+_]'ets
- % . | 1 Z+jets
N 3 2000 I Top
B - | Multijet
10 = 1500 =
- 1000F-
il 500
e :
£ =0 %" s0 100 150 200 250 300

LLR Dijet Mass (GeV)
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Results using Dyet Mass Nov 14, 2008

X First, test our dijet mass templates as we would test for a Higgs signal

Are our tests consistent with a signal-like excess? Does everything work as expected?

_ -4 . g . . g . o
1-CL, = 2.5Xx107, yielding a 1-sided Gaussian significance of 3.5 sigmas

95% CL upper cross section limits: 9.1 pb expected, 29.7 observed

ao(WW+W2Z)"*Y = 16.1 pb. We are sensitive to the signal and see an excess

10°

2 = — B-Only LLR > i :
R — S+B LLR § . fDOLLD + Data
0 _ o 3000 Bl Diboson Signal
A = QObserved LLR | — - Was
102 = =~ 2500 C_ - +_]etS
= % - || Z+jets
- 3 2000 I Top
B - | Multijet
10 1500 =
- 1000
500 i—
0 C

50 100 150 200 250 300
Dijet Mass (GeV)

o

40 60
LLR
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Results using Dyet Mass II Nov 14*, 2008

X Next, allow the signal rate to be a free parameter and fit the excess of events
o(WW+WZ)me2sured = 18,5 + 2.8 (stat) + 4.9 (syst) £ 1.1 (lumi) pb

X Significance is measured by fitting the signal cross section to pseudo-data
drawn from the background-only hypothesis

Expected: 2.9 standard deviations above background

Observed: 3.3 standard deviations above background

% 300F D9, 1.1 i —+ Data - Background ::; - D@, 1.1 f*  Zero Signal Pseudo-Experiments
E ) : .Dibgsgn Slgnal E 108 E_ Mean: 1.6 pb, RMS: 2.76 pb
> 200 —+1s.d. on Background| & |5k
e b =
3 K -
= o 10*E
&a = = oy Ao
= = 3488 entries above
. i 10°g observed cross section
o100 e s e :
% % A 22 Prob = 0.56 ** 102E Observed p-Value: 0.000443
. - = N-c: 3.32
Lr:: EJ::) 0 ] ‘_I_I_ll_'_ 10
Q‘E 201 !_,_I_I—L!_.I_I L L ]-Ell-|||--||||||....I....I....
0 50 1[][] 150 7[][) 750 3[]0 0 10 20 30 40 50
Dijet Mass (GeV) Fitted Cross Section (pb)
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Increasing Signal Significance w Nov 14*, 2008

X A common technique to boost signal significance in HEP searches is to
employ multivariate event classifiers. Many available options:

Likelihood ratios, Neural networks, Decision Trees, Matrix Elements, etc.

X  We found the most powerful and robust classifier was the Random Forest

Our Random Forest software comes from the package “StatPatternRecognition”
http://www.hep.caltech.edu/~narsky/spr.html (Ilya Narksy, Caltech)

X From the outside ( black box ), the Random Forest is similar to most
machine learning techniques:
Train using events of known origin (eg,

signal or background classes)
background events

Random Forest

Wade Fisher Evidence for WW/WZ-lvijj
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Increasing Signal Significance w Nov 14*, 2008

X A common technique to boost signal significance in HEP searches is to
employ multivariate event classifiers. Many available options:

Likelihood ratios, Neural networks, Decision Trees, Matrix Elements, etc.
X  We found the most powerful and robust classifier was the Random Forest

Our Random Forest software comes from the package “StatPatternRecognition”
http://www.hep.caltech.edu/~narsky/spr.html (Ilya Narksy, Caltech)

X From the outside ( black box ), the Random Forest is similar to most
machine learning techniques:

Slgnal events

background events
The trained Random Forest is used to

classify events of unknown origin as
signal-like or background-like 1200F

Train using events of known origin (eg,

Random Forest
signal or background classes) | training |

1000F

so0of

6001
unknown events - Random Forest —— 100"
(trained) g

200F

= f f | f f f f f f | f f f | f
% 0.2 0.4 0.6 0.8 1

More signal-like >
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" Wine & Cheese
The Random Forest (RF) Nov 14", 2008

A “Forest” of many decision tree classifiers

Random Forest

X Each decision tree in the forest is independent from all others
Each tree uses a random subset of the input variables
Allows each tree to focus on a different subset of kinematics and correlations
Each tree is trained using a random subset of training events
Provides protection against over-training and high-weight events

¥ The Random Forest classifier output is the average output over all trees

Fluctuations and over-training that occur for a single decision tree are
reduced in the global averaging of fluctuations

Wade Fisher Evidence for WW/WZ-lvijj
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RF Input Variables Nov 14, 2008

X We use 13 kinematic variables as input to the Random Forest
Each variable helps distinguish between signal and at least one background

Ensure variables are well-modeled by requiring data/MC X probability outside
55 <M < 110 GeV to be greater than 5%

In addition, include dijet mass, MET, MTW, jet pT, W—lv pT, & angular variables

— = E o] -
S 35005 —+ Data D@, 1.1 fb' > 4000F D@, 1.1 fi + Data S 5000 D@, 1.1 B —+ Data
g 3000 Il Diboson Signal E 3500 M Diboson Signal | £ s M Diboson Signal
> - I Weets 3000k B Wets g 4000 I Wets
8 2500F [ Z+jets g OF [ Z+jets 2 f [ Z+jets
M 2000F M Top @ 2500 I Top 3000 Ml Top
£ [ ] Multijet 2000F [ Multijet - [ Multijet
1500 1500 2000
1000 1000 = E
F g 1000~
S00F 500F ¥
- e et I = * -
% 05 1 L5 2 25 3 0 4 60 80 100 120 6
AG(MET, lepton) Py (Dijet, Jetl) (GeV) ktMin® Fome
3 200 | + Data 3 3000 3 Data DO. L1 b E 3000 = Data D, 1.1 6
S 20005_ M Diboson Signal| 2 - [ Diboson Signal S - . lefnson Signal
2 coob I W+ets & 40001 [ Wtjets £ 2500 [ W-jets
A annE- [ Z+jets 2 [ Z+ets A ool | ZAjets
- I Top 3000(~ [l Top B Top
[ |Multijet - [_] Multijet 15005 ] Multijet
2000 g
600 C 10001
400 1000 -
C 500

0||||I||||

-1 -0.5 0 0

-1 -0.5 0 0.5 1 0

0.5 1

Dijet Frame 3 02 04 06 08 1
cos(Z(W, Jetl)) cos(Z(Dijet, Jet2)) Centrality
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Random Forest Classifier Nov 14*, 2008

X The Random Forest output demonstrates improved separation of signal and
backgrounds, while maintaining good agreement between MC and data

Electron + Jets Channel

3 - — Diboson Signal 3 1400F D@, 1.1 fi5" 4 Data 3 ~+-Data
2 o1z ) 2 1200f- M Diboson Signal| < M Diboson Signal
2 —WHeis 2 a I Wets 2 B Wets
= 0.1 “+ o o . o .
E s +F + i 1000E [ 1Z+jets i [ ]Z+jets
- C
2 0.08~ ++ s 800F- W Top M Top
0065 - - F " Multijet [ ]Multijet
P e - 600—
N + e T C
0.041- e -~ 400
0.2 . = - = 200F
OU_—"'_-I ! S S == 0: ....................... PAFITIN IRR BRrSrI IPRPar
02 04 0.6 0.8 1 0 0l 02 03 04 05 06 07 08 09 | 06 065 07 075 0.8 085 09 095 1
Electron+Jets RF Output Electron+Jets RF Output Electron+Jets RF Output
Muon + Jets Channel
% - — Diboson Signal 3 1600F D@, 1.1 fi5" 4 Data 3 ~+-Data
S 0.12[~ W % 1400 I Diboson Signal % M Diboson Signal
- +jets . g ook I Wets = I W-ets
= L —+ ) O . <] .
E - - L - 3 . [ ]Z+jets i [ ]Z+jets
S 0.08 + o+ -+ 1000 W Top W Top
- B + - 800 Multijet [ Multijet
0.06[— - - - C
- -+ - 600F
B -t -
0.04f e e -
B e -+ 400
002 = o= 200/
B **_ 1 T IR - _.-T__._ 5
0p 0.2 0.4 0.6 0.8 1 00 01 02 03 04 05 06 07 08 09 1 06 065 07 075 08 085 09 095 1
Muon+Jets RF Output Muon+Jets RF Output Muon+lets RF Output
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Random Forest Subspace

Events/0.04

Events/10 GeV

Wine & Cheese
Nov 14", 2008

High Significance

X Though the dijet mass is clearly an important variable, it is useful to understand how
the RF is improving signal significance
A simple test: Dissect the RF to see where the events in dijet mass are going
=0.33<RF<0.66: the RF is efficient at moving events from the MJJ signal peak
Low Significance Transition Region
O <RF <0.33 0.33 <RF < 0.66
F 2000 _
§ 3000F D@, 1.1 fb :g?ta _ § Lot D9 1L ;%%%scn Signal
= n iboson Signal| 3 B 4+ 2 Wets
& 25001 I Wets & 1600F D Z+jels
=4 F . = o -Top ..
M 000k [ Z+jets / 1400¢ CMultijet
- [l Top 12001
15001 [CIMultijet 1000
c 800
1000 600}
500:_ 400;*
- 200
% 06 08 1 % 02 04 06 08 1
RF Output RF Output
% a0k DO L1 +Daa 2 fDp LI +Data
P - M Diboson Signal| = 2500 I Diboson Signal
> 1000 O W+ets 5 C O W+ets
g - [(1Z+jets & 2000F []Z+ets
& 800 W Top & C B Top
6001 [IMultijet 1500 [JMultijet
400; 1000;_
2005— 500(
O so 100 150 200 250  30¢ O " T50 100 150 200 350 300
Dijet Mass (GeV) Dijet Mass (GeV)

0.66 <RF <1
1200:_ —4+— Data DO, 1.1 fb
- [ Diboson Signal
1000 ] W+jets
c [ Z+jets
500 [ Top
600 [ ] Multijet
400~
200
0: ) e |
0 0.2 04 0.6 0.8 1
RF Output
1800F 1oy | 1 15! + Data
1600~ M Diboson Signal
1400 EIW+ets
1200F EZﬂ'ets
E Top
1000 B
800" [ Multijet
600 ;—
400
200
C PP NS S SRR N ST S S R S S
00 50 100 150 200 250 300
Dijet Mass (GeV)
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Results with Random Forest Nov 14%, 2008

X Revisit our statistical tests using the Random Forest classifier

Are we consistent with the dijet mass results? Do we improve as expected?

1-CL, = 1.8x10°, yielding a 1-sided Gaussian significance of 4.6 sigmas

Dijet mass, 1-CL, = 2.0x10™, or 3.5 sigmas

95% CL upper cross section limits: 7.7 pb expected, 32.2 pb observed

g(SM)™°Y = 16.1 pb. Dijet mass: 9.1 pb expected, 25.0 pb observed

Random Forest LLR

— B-Only LLR
— S+B LLR

= Observed LLR

[R—
sl
[P ]

PEs / Bin

[R—
s
[

10

LLR

Events / 0.04

3000

2500

2000

1500

1000

500

0

D@, 1.1 f5 -+ Data
B Diboson Signal

I Wets
| |Z+jets
B Top

| |Multijet

PR N [ SN RN T I T o A
0.1 02 03 04 05 06 07 08 09 1
RF Output
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Results with Random Forest Nov 14%, 2008

X Revisit our statistical tests using the Random Forest classifier
Are we consistent with the dijet mass results? Do we improve as expected?
1-CL, = 1.8x10°, yielding a 1-sided Gaussian significance of 4.6 sigmas
Dijet mass, 1-CL, = 2.0x10™, or 3.5 sigmas

95% CL upper cross section limits: 7.7 pb expected, 32.2 pb observed
g(SM)™°Y = 16.1 pb. Dijet mass: 9.1 pb expected, 25.0 pb observed

Dijet Mass LLR

-5 10° = — B-Only LLR =S 3000E D@, 1.1 bt <+ Data
~ - — S4B LLR 2 - I Diboson Signal
0 - @ 2500 .
P = Observed LLR = B I Wjets
10°E D 2000 L | Z+jets
- u B Top
- 1500 [ |Multijet
10 -
E 1000
5001~
1 C
» PR N [ SN RN T I T o A
40 40 50 % 01 02 03 04 05 06 07 08 09 1
LLR RF Output
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Results with Random Forest Nov 14, 2008

X Revisit our statistical tests using the Random Forest classifier
Are we consistent with the dijet mass results? Do we improve as expected?
1-CL, = 1.8X 10°, yielding a 1-sided Gaussian significance of 4.6 sigmas
Dijet mass, 1-CL, = 2.0x10™, or 3.5 sigmas

95% CL upper cross section limits: 7.7 pb expected, 32.2 pb observed
g(SM)™°Y = 16.1 pb. Dijet mass: 9.1 pb expected, 25.0 pb observed

S 3000F pg, 1.1 fiby' + Data
Improvements due to RF e - I Diboson Signal
« 2500 -
= C Wiets
~18% in cross section upper limit 5 - » "
A 2000F | |Z+jets
~32% in significance - Bl Top
1500 | |Multijet
Roughly corresponds to a ~30-35% increase in .
effective luminosity 1000
Expect larger Higgs search improvement 500

PR N [ SN RN T I T o A
00 0.1 02 03 04 05 06 07 08 09 1
RF Output
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Results with Random Forest II % Nov 14, 2008

X Next, fit the Random Forest templates to data to measure the cross section

Channel Fitted signal o (pb) Expected p-value (significance) Observed p-value (significance)
evqq RF Output 18.043.7(stat ) +5.2(sys )£ 1.1(lum) 6.8 x 107" (2.5 s.d.) 3.2 %1077 (2.7s.d.)
uvqq RF Output 22,843 3(stat)+4.9(sys)£1.4(lum) 1.8 x107* (2.9 s.d.) 5.2 x107° (3.9 5.d.)
Combined RF Output  20.2+2.5(stat )+3.6(sys)+1.2(lum) 15 %107 (3.6 s.d.) 54 % 107° (44 s.d.)
X Electrontjets and muon+jets channels each consmtec;;m;";@“l T
B Diboson Signal
Larger acceptance and slightly smaller systematics in mucg Eg’ﬂets ]
@ 2000 Hets
expected significance. Top

[ IMultijet

= - : @ —
S L0l DG, L1 f5' —+ Data - Background = DG, 1.1 ft nts
o . . v 6
= - I Diboson Signal g 10 >
:EJ —+1 s.d. on Background % 105 %01 02 03 04 05 06 07 o3 55
i i
g 10 |
o i 40 entries above
g L0F observed cross section
q* =
T 2L
2 il +2 Prob = 0.78 - Observed ];Vahie_:l 5).000005
- | 2 - L G 4.
g ) 0 — l—l_l_l—l_l—l _I—- I | I_ lUE
. - e N -
TC;E ] TN S P NS PSP SRS SRl N L& """,7"""""""""'
Al 0 ol 02 03 04 05 06 07 08 09 1 0 10 20 30 40 50
RF Output Fitted Cross Section (pb)
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Post Fit Input Variables Nov 14, 2008

X A final validation cross check is to check the distributions of the dijet mass
after performing a fit to the RF classifier output vs a fit to the dijet mass itself

Expect fits to achieve similar results

Differences may indicate different biases/sensitivities in RF vs dijet mass

Dijet Mass Fit Random Forest Fit
e i > - L
E 350E- DD, L11b' ~+ Data - Background & 350F D@, 1.1 b ~+- Data - Background
= 3005— Bl Diboson Signal S 300F Bl Diboson Signal
E 25[);_ —+1 s.d. on Background % 250;_ —+1 s.d. on BaCkngl]rld
S 200/ 2 2005
=150 L50E
100F L0
50F + s0F- +
oF Sty oF e e
S0E S0
- TR TR N RN T SIS T S TR (NS SRS AN S N TN ST SN T ST S N - L L LT Lo L1 Lo
0 50 100 150 200 250 300 0 30 [00 150 200 350 300

Dijet Mass (GeV) Dijet Mass (GeV)

X* Probability =0.56 X° Probability =0.45
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W+jets Cross Section Nov 14, 2008

X As noted earlier, the W+jets cross section is treated as a free parameter in fits
to data

Reduces our dependence on theoretical predictions

A determination of this parameter in data provides valuable feedback to
other analyses using this final state ( eg, WH—1vbb )

X Right: correlation ellipse for
signal and W+jets cross
sections

23__ ..... D Q‘l;l.{)ﬂﬁ ....... —_ -»M-I-Ifl-l-n-’ll-]-lfl-’l ......
- Re—Fﬂted Pa1amet615 —lGRegmn

Remaining 27 parameters are
refit for each fixed point in
the plane

Signal Cross Section (pb)

Measured value of W+jets
k-Factor: 1.53%0.13

Theoretical (NLO/LL) - i | i t t 1 1 |
predicti()n: 1.52 14 145 15 155 16 165 1.7 L1L.75 138
W+jets k-Factor
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Back to the Higgs Search Nov 14", 2008

D@, 1.1 ' Zero Signal Pseudo-Experiments
Mean: 1.7 pb, RMS: 2.43 pb

X This is the first evidence of a diboson signal in
a lepton+jets final state at the Tevatron

S 3 5

=] LU LI L L L L R AL

40 entries above
observed cross section

# Pseudo-Experiments
Ew

Provides a crucial validation for our approach to

Observed p-Value: 0.000005

searching for a Higgs boson N-0: 4.40

10

L M el o e e e e e e b w
10 20 30 40 50
Fitted Cross Section (pb)

X Statistical tools

We found clear evidence for a dijet mass resonance DB, 1.1 i + Data

=t
S M Diboson Signal
on top of a large background, keeping £ EWHEE
. . . [_E Z+jets
systematic uncertainties under control W Top

[ IMultijet
Divergence of expected and observed limits led us

to a 4.4 standard deviation measurement

L e [ T ——
01 02 03 04 05 0.6 07 08 09 1

X Multivariate classifier RE Output
) . = D@ Preliminary, Li=1,0-3.0.f8 —= Obsérved Limit
We demonstrated an improvement in the 5 SM Higgs Combination + Expécted Limit
. . (e . . . = ted *1i-
significance of a real signal by introducing the £ il
—
Random Forest classifier 2 10
An effective increase in luminosity of ~35%

X The Tevatron Higgs search

Standard Model = 1:0

These tests don't guarantee we can find the Higgs, 1

but they provide a proof of principle 100 110 120 130 140 150 160 170 180 190 200
my; (GeV/c?)
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Conclusions Nov 14, 2008

X We present the first evidence for WW/WZ-lvjj decays at the Tevatron
o( WW+ Wz)ymeesired = 20.2 + 2.5 (stat) = 3.6 (syst) + 1.2 (Iumi)pb

o( WW+ Wz)H"e” = (124 + 3.7) + 0.1pb = 16.1 + 0.1pb
WW WZ

Signal significance: 4.4 standard deviations above background
Submitted to PRL
Available at: Fermilab-Pub-08/457-E, arXiv:/0810.3873 [hep-ex]

X Results are consistent with previous Tevatron diboson measurements in

150

Higher precision cross section measurement L00

purely leptonic final states T sl DOLLIY + Data - Background
S 300E M Diboson Signal
2 250F — =1 s.d. on Background
X DZero's new data sample has reached 4 fb’! 5 200F +
/M

Separation of WW and WZ final states 0

OF

Anomalous triple gauge coupling limits 50 =
0 50 100 150

500 330 300
Dijet Mass (GeV)
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Connecting with Higgs Theory w Nov 14™ 2008

x Just by talking about weak vector boson Vo == p+A(p )’
masses, we're already talking about the Higgs

2:—g2V2 MZZZ%( 2+k2)V2

Remaining particle masses are put in “by hand”

X Furthermore, the Higgs comes to the rescue
again to maintain unitarity in WW scattering b, == \/ — “z /2 A= v/\E

True for MH < ~900 GeV

Scalar Higgs cancels
Cross section diverges like s/M_* divergence

Wade Fisher Evidence for WW/WZ-lvijj
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Systematic Uncertainties Nov 14", 2008

X One of the dominant sources of systematic uncertainty is the jet energy scale

Jet energy scale uncertainty for signal events

> 0.25 X u
3 C — Nominal JES > 0.1 -
S .0 — +1 Std Dev JES g |
-~ U —. 8 0.5
g r 1 Std Dev JES Bl +1 Std. Deviation
S 0.15 3] i
S - g 0
= - = i . .
-0l 3 -1 Std. Deviation
- & -0.05
- o
0.05 = -
— o -
B I | | | | I 2-0'1_....I....I....I....I....I....
% ""20 40 60 80 100 120 140 160 180 200 m 0 50 100150 200 250 300
Dijet Mass (GeV) Dijet Mass (GeV)
Jet energy scale uncertainty for W+jets events
> 012 \ 2
3 C — Nominal JES 2 0.08
S o1l 8 0.06
iy “E — +1 Std Dev JES g 0.04E-
>\ = - [ ] L]
e L
4] L -
S 0.06— 5 o
2 u = -0.02 -1 Std. Deviation
0.04— & -0.04f
: .2 :__I_I_l-\"_l_l_l—
0.02] 5 006
C | | | I 2-0'08:_....|....|....|....|....|....
0y <5 S T e 50 500 & 0 50 100 150" 200 250 300
Dijet Mass (GeV) Dijet Mass (GeV)
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W+jets Cross Section Nov 14, 2008

X The W+jets cross section is treated as a {ree parameter in fits to data

Reduces our dependence on theoretical predictions

Correlations can be extracted in two ways:

1) Fix all parameters at values from minimum. Demonstrates compensating
correlation effect of cross sections

2) Refit all parameters for each set of points. Reflects actual measurement and
reveals size of remaining degrees of freedom

Remaining 28 parameters fixed Remaining 28 parameters re-fit
at values from minimum for each set of points in the plane
2 . D@, 1. 0 fb' —MIIIIIHUIH = 28_— ..... D Qj ..... 1 ﬂﬂj _________________________________________ — Minimum. ..
= 26'— Fixed Parameters e ) Regmn --------------- = - RE Flﬂiﬂd P'11‘1H18t315 — 16 Region
o i i < — o
5 3 —20 Regmn | s — 20 Region
m el '_ m 24 .. AR
2 2 -
o 79— o A o e T NG N
@) O T
T 5k ® b e
2 2 -
) I ) R TR SRR . R AOSRRSO Hult S SOR .S S S
18}~ 18
: 16:— ...............................................................................................................................................
16‘,-_I ..... e II ..... . II ..... | ,I ..... . II .......... i - .I ..... II ..... o | :II Iilll Iill II.II Ilil g Iil
1.5 1.51 1.52 1.53 1.54 1.55 1.56 l4 145 15 155 16 165 1.7 175 1.8
W+jets k-Factor W+jets k-Factor
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Decision Trees w Nov 14%. 2008

X Decision tree is trained/grown using a set
of known signal & background training Training events

events /

= These events go into the root node

timal split
X Algorithm looks at all possible splits on all opumal spli

input variables and applies split giving best
separation between signal and background

x Events pass into one of two child nodes____——»
depending on whether they pass or fail

X This process is repeated until: .
A node contains all or no signal events . |

# events per node is less than a pre-specified
amount (optimized for each application)

X Output for an unknown event is
determined by the signal purity of the
terminal node that the event ends up in L
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Statistical Tests w Wine & Cheese

X With our carefully studied Monte Carlo and data samples, we may now
proceed to perform statistical tests of the system.

Aim to validate Frequentist search techniques with a “real” signal

Our basic goal: Use data to distinguish two competing hypotheses:
HO = null hypothesis: background-only model (zero signal)
H1 = a test hypothesis: background + signal
HO is a compound hypothesis with some set of nuisance parameters
H1 has the same form, but add extra nuisance and model parameters

X Following the Neyman-Pearson lemma, we construct a test statistic (ordering
rule) based on the relatlve Jomt likelihoods for the hypotheses:

bms E g DY, 1.1 b -+ Data
— = 3000 M Diboson Signal
I I Ny - U WHjets
2500 .
=0 L ) = - U | Z+jets
by
2 2000 Il Top

We can treat each bin of a histogrammed ] Multijet

distribution as a semi-independent test 1000

0 50 - 100 150 200 250 300
Dijet Mass (GeV)
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Statistical Tests II w Wine & Cheese

X The Frequentist approach:
Assume data is drawn randomly from a Poisson parent distribution
= Generate pseudo-data via random Poisson trials with mean value taken

from expected backgrounds (HO) or signal-plus-background (H1)

X A complication: Our hypotheses are compound ( they contain
nuisance parameters ) and we need to test a simple hypothesis

Systematics are a tricky Frequentist problem, so use a Bayesian model

= Model uncertainties on nuisance parameters as Gaussian-distributed,
sample randomly for each pseudo-experiment (including correlations)

[ S
‘w - = S+BLLR
¥ Distribution of test statistic for each PE &% 1= — BOnyLLR
defines “prior predictive ensembles” z " — Observed LLR
-30025;
x CL_(CL_ )= fraction of HO (H1) outcomes & 002t L|_IL CL
less signal-like than data 0.015] p SP
X Width of distributions arises from Poisson  “*t r
® systematic uncertainties -
T —
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Nov 14", 2008

X Our system ( also the Higgs search ) is systematics-limited:
signal~3% of background, uncertainty~20% of background.

X Solution: Counteract the degrading effects from uncertainties via
“Profile Likelihood” technique
Likelihood now a function of signal, bkgd, data, and nuisance parameters

Maximizing the likelihoods for a set of data points defines our “best fit” for
that data (or pseudo-data) in a given hypothesis

L ()C 0 RI’ o S ) Two independent likelihood maximizations
Q — — <«——— are performed over nuisance parameters
A arameters, one for each pseudo-experiment
Lxlo. ,0) P pseudo-exp

0., Oz : Physics parameters in HI and HO, respectively

@ 0 : Nuisance parameters which maximize L for HI and HO, respectively

Result: data-constrained systematics, narrowed Q distributions,
improved separation of H1 and HO
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Statistical Tests IV w Nov 14% 2008
X Profile Likelihood: defined by a fit of our MC model to data

Assume prediction of N events per bin is a function of nuisance parameters

B = nominally predicted bin content

syst

é — B H ( 1+ O'k S ) o = fractional uncertainty
i i ik

k=0 S, = N sigma deviation from nominal

Assume data is Poisson distributed, derive joint likelihood over histogram
bins and include prior information on systematics

Syst
A

B,-_’B,-H (1+07S,)

k=0

Pi(X) = Poisson PDF for X events in bin i
G(Y) = Gaussian PDF for systematic K

By considering -2InQ, the resulting X2 is linear in bins
&—002

0
o

= can “float” nuisance parameters by removing S* prior constraint

Ratio of Gaussian priors reduces to s =

Vo A
X> = —2InQ = 2) (B—D)-D,In —’ + 2.8
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